grids.mixins.chunking.GridChunkingMixin.construct_chunk_interpolator#
- GridChunkingMixin.construct_chunk_interpolator(field: ndarray, field_axes: Sequence[str], chunks: ChunkIndexInput, method: str = 'linear', include_ghosts: bool = False, halo_offsets: HaloOffsetInput | None = None, bounds_error: bool = False, fill_value: float | None = nan, oob_behavior: str = 'raise', __validate__: bool = True, **kwargs) RegularGridInterpolator [source]#
Construct an interpolator for a specific chunk using SciPy’s RegularGridInterpolator.
- Parameters:
field (
np.ndarray
) – Field data over the chunk, aligned with field_axes.field_axes (
Sequence[str]
) – Axes spanned by the field (e.g., [“x”, “y”]).chunks (
ChunkIndexInput
) – Chunk index (e.g., (1, 2) or [1, 2]) for the region over which to interpolate.method (
{"linear", "nearest"}
, default"linear"
) – Interpolation method.include_ghosts (
bool
, defaultFalse
) – Whether to include ghost zones in the chunk coordinate extraction.halo_offsets (
int
,sequence[int]
, orarray
, optional) – Extra padding around the chunk region.bounds_error (
bool
, defaultFalse
) – Whether to raise an error for out-of-bound queries.fill_value (
float
orNone
, defaultnp.nan
) – Fill value for out-of-bound queries if bounds_error=False.oob_behavior (
{"raise", "clip"}
, default"raise"
) – How to handle index overflow when applying halo or ghost zones.__validate__ (
bool
, defaultTrue
) – Whether to perform full input validation.**kwargs – Extra options forwarded to RegularGridInterpolator.
- Returns:
interpolator – A callable that performs interpolation over the selected chunk.
- Return type:
RegularGridInterpolator