pisces.models.galaxy_clusters.spherical.SphericalGalaxyClusterModel.from_entropy_and_density#

classmethod SphericalGalaxyClusterModel.from_entropy_and_density(density_profile: BaseSphericalDensityProfile, entropy_profile: BaseSphericalEntropyProfile, filename: str | Path, min_radius: unyt_quantity | str = unyt_quantity(1, 'kpc'), max_radius: unyt_quantity | str = unyt_quantity(1, 'Mpc'), num_points: int = 1000, overwrite: bool = False, stellar_density_profile: BaseSphericalDensityProfile = None, **kwargs)[source]#

Generate a spherical cluster model from gas density and entropy profiles.

Parameters:
  • density_profile (BaseSphericalDensityProfile) – Profile object representing the radial gas density.

  • entropy_profile (BaseSphericalEntropyProfile) – Profile object representing the entropy of the ICM gas.

  • filename (str or Path) – Output HDF5 file path.

  • min_radius (unyt_quantity or str, optional) – Minimum radius for sampling (default: 1 kpc).

  • max_radius (unyt_quantity or str, optional) – Maximum radius for sampling (default: 1 Mpc).

  • num_points (int, optional) – Number of radial samples (default: 1000).

  • overwrite (bool, optional) – Whether to overwrite existing file (default: False).

  • stellar_density_profile (BaseSphericalDensityProfile, optional) – Optional stellar density profile. If provided, the stellar density will be included in the model. Otherwise, the stellar density is assumed to be zero and no stellar component is included.

  • **kwargs – Additional keyword arguments for radial grid construction.

Notes

Given entropy \(K(r)\) and gas density \(\rho_{\mathrm{gas}}(r)\), we use:

  1. Entropy definition:

\[ \begin{align}\begin{aligned} K(r) = \frac{T(r)}{n_e(r)^{2/3}}\\with\end{aligned}\end{align} \]
\[n_e(r) = \frac{\rho_{\mathrm{gas}}(r)}{\mu_e m_p}\]
  1. Invert to get temperature:

\[T(r) = K(r) \cdot \left(\frac{\rho_{\mathrm{gas}}(r)}{\mu_e m_p}\right)^{2/3}\]
  1. Compute pressure from ideal gas law and proceed as in the temperature + density pathway.